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Abstract. We investigate new polynomial hierarchies of Lax pairs which contain the
polynomial pairs for the system of O(3) chiral field equations and Landau–Lifshitz equation
introduced recently and give an algorithmic construction of the corresponding hierarchies of
soliton equations. We compare the Landau–Lifshitz equation hierarchy obtained via a polynomial
bundle with the hierarchy obtained via an elliptic bundle.

1. Introduction

It is well known that the so-called inverse scattering method (see [1]) allows one to apply
different and fruitful approaches to the investigation of the class of nonlinear evolution
equations called soliton equations. Their characteristic property is that they can be expressed
as the compatibility condition of two linear operatorsL andM:

[L, M] = 0 (1)

(This representation is called the Lax representation and the coupleL, M is called the Lax
pair.) In the recent work [2] we introduced new Lax pairs, polynomial in the spectral
parameter, for two important physical systems†:

(A) The Landau–Lifshitz equation [3] (LL)

St = S × Sxx + S × RS. (2)

HereS(x, t) = (S1(x, t), S2(x, t), S3(x, t)) is a vector field depending on the spatial variable
x and the timet , taking its values on the unit sphereS2 ⊂ R3:

S2 = S2
1 + S2

2 + S2
3 = 1 (3)

R is the diagonal matrix

R = diag(r1, r2, r3) ri > 0

with non-negative entries,(RS)i ≡ riSi; i = 1, 2, 3. The LL equation describes
perturbations propagating in a direction orthogonal to the anisotropy axis in a ferromagnet,

† In what follows we shall obtain the pairs for these systems as a consequence of a general construction and for
this reason we do not present them now.
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and the boundary conditions for it arise naturally from the physical background. These
boundary conditions can be expressed as follows

lim
x→±∞ S = (0, 0, 1). (4)

Remark. It should be mentioned that LL equation is related to a number of other systems
of the classical mechanics, see[4].

(B) O(3) chiral field equations (CF)

ut + ux + u × Rv = 0

vt − vx + v × Ru = 0.
(5)

Herev, u are two vector fields depending onx, t taking values on the unit sphereS2 and
× is the vector product symbol.

The system of O(3) chiral fields describes the dynamics in antiferromagnets and liquid
crystals [5], and has application in quantum field theory [6].

It is well known that the Lax pairs divide into classes (hierarchies) and in every such
hierarchy the first operators in the Lax pairs (those containing differentiation with respect to
the spatial variable) coincide. Usually the pairs in the hierarchy have some natural ordering,
for example, one can order polynomial pairs by the maximal degree of the spectral parameter
in the second operator of the corresponding Lax pair (those containing differentiation with
respect to time). The first nonlinear equation in the hierarchy of equations corresponding to
the hierarchy of Lax pairs usually gives the name to the the whole hierarchy of equations
and to the hierarchy of Lax pairs itself. Thus one speaks about the nonlinear Schrödinger
equation hierarchy, the nonlinear Heisenberg equation hierarchy, and so on.

We must stress that the pairs known up to now both for the LL and CF were elliptic in
the spectral parameter, [7, 8]. On the contrary, as we have mentioned, ours are polynomial
in the spectral parameter.

We shall construct the polynomial hierarchy of Lax pairs explicitly for the O(3) CFS
and for the LL cases, as well as the corresponding hierarchy of soliton equations. As far
as we know the hierarchy for the chiral field equations has not been constructed explicitly
until now. As to the hierarchy related to the Landau–Lifshitz equation, it will be interesting
to compare the hierarchy of equations obtained via a polynomial bundle with the hierarchy
obtained via an elliptic bundle (see [9–12]).

2. The polynomial hierarchy of Lax Pairs related to the system of O(3) chiral field
equations

First of all, in order to make the calculations easier we shall introduce some notation and
take into account that most of our matrices lie in the algebraso(4), the algebra of 4× 4
skew-symmetric matrices with complex entries. This algebra is semisimple, but not simple.
Actually, so(4) is split into a direct sum of two algebras, each of them isomorphic toso(3).
It can be verified that the splitting means that every elementA of so(4) has a unique
representation of the following form:

A = {u}I + {v}II (6)



O(3) chiral field equation hierarchy 5577

where

{u}I =


0 u1 u2 u3

−u1 0 u3 −u2

−u2 −u3 0 u1

−u3 u2 −u1 0

 (7)

{v}II =


0 v1 v2 −v3

−v1 0 v3 v2

−v2 −v3 0 −v1

v3 −v2 v1 0

 . (8)

With this notation the commutation relations are
[{x}I, {y}I ] = −2{x × y}I

[{x}II , {y}II ] = −2{x × y}II

[{x}I, {y}II ] = 0.

(9)

This proves thatso(4) is the direct sum of twoso(3) algebras. There are, however, some
more interesting properties of the above splitting. IfJ is the diagonal matrix

J =


−j1 − j2 + j3 0 0 0

0 −j1 + j2 − j3 0 0

0 0 j1 − j2 − j3 0

0 0 0 j1 + j2 + j3

 (10)

then we have
{x}IJ {y}II − {y}II J {x}I = 2({x × Ky}I + {Kx × y}II )

{x}IJ {y}I − {y}IJ {x}I = −2{K(x × y)}II

{x}II J {y}II − {y}II J {x}II = −2{K(x × y)}I .

(11)

whereK = diag(j1, j2, j3) and the notation(Kz)i ≡ jizi is used.
Let us consider the hierarchy of Lax pairs having the following form:

L ≡ ∂

∂x
− U MN ≡ ∂

∂t
− VN (12)

U(λ) = 1
2A(λ + J )

VN(λ) = 1
2(λNB0 + λN−1B1 + . . . + BN)(λ + J )

(13)

where
A = {u}I + {v}II

Bn = {bn}I + {cn}II .
(14)

Remark. One can see that these pairs are natural generalizations of the 4× 4 pairs we
obtained in [2]. Strictly speaking from the beginning we obtained the pairs for LL equation
and for the CFS in 6× 6 form and then making use of the classical isomorphism between
so(3, 3) andsl(4) cast them into 4× 4 form. In the present work we prefer the 4× 4 form
which is simpler.
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The compatibility condition between the operatorsL andMN gives the following matrix
equation, which must be satisfied for arbitraryλ:

Ut − (VN)x + [U, VN ] = 0. (15)

The left-hand side of this equation is a polynomial in the spectral parameterλ and therefore
all the coefficients of this polynomial must be equal to zero. This gives us the following
relations:

[A, B0] = 0

[A, Bn+1] = 2(Bn)x − (AJBn − BnJA) n = 0, 1, . . . , N − 1

2At + AJBN − BNJA − 2(BN)x = 0.

(16)

In order to obtain the evolution equation corresponding to the Lax pair{L, MN } one must
be able to resolve recursively the firstN + 1 of these equations and to be able to insert the
result into the last equation. Making use of the particular form of the matricesA andBn

we readily arrive at the following chain of relations:

u × b0 = 0 v × c0 = 0

u × bn+1 = −(bn)x − K(v × cn) + u × K(cn) − bn × K(v)

v × cn+1 = −(cn)x − K(u × bn) + K(u) × cn − K(bn) × v

}
n = 0, 1, . . . , N − 1.

(17)

If we are looking for an infinite set of Lax pairs then we have an infinite system of equations.
We shall call this system the O(3) CF chain system. Below, in order to simplify the solution
of the chain system and also for the reason that the conditions below must hold for the O(3)
chiral field equations, we shall assume that

u2 = 1 v2 = 1. (18)

Every solution of the O(3) CF chain system allows us to obtain the system of evolution
equations

ut = (bN)x + K(v × cN) − u × K(cN) + bN × K(v)

vt = (cN)x + K(u × bN) − K(u) × cN + K(bN) × v

}
N = 0, 1, 2, . . . . (19)

Using the next terms of the hierarchy one can also write down these equations in the form

ut = −u × bN+1

vt = −v × cN+1

}
N = 0, 1, 2, . . . . (20)

Then it is clear that the constraintsu2 = 1, v2 = 1 are compatible with the evolution.
The solution of the first equations in the chain is clear:

b0 = εu c0 = µv (21)

whereε, µ are arbitrary scalar functions. The corresponding evolution equations are

ut = εux + εxu + (ε − µ)(u × K(v))

vt = µvx + µxv − (ε − µ)(v × K(u)).
(22)

However, in order to resolve the next equation of the chain system (or in order to obtain
evolution equations compatible with the constraints) the left-hand sides of these equations
must be orthogonal to the vector fieldsu and v, respectively. This readily gives that
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ε, µ must be some parameters that do not depend onx. For an appropriate choice of the
parametersε, µ andji, i = 1, 2, 3 we obtain the O(3) CF.

At each step the situation is similar: the solution of theN th equation is not unique and
the freedom can be used to ensure that the next equation in the hierarchy can be resolved.
However, some freedom still exists, but it disappears if we can fix the values of the fields
and theirx derivatives at some point. We shall assume that

lim
x→±∞ u = u0 = constant

lim
x→±∞ v = v0 = constant

lim
x→±∞

(
∂

∂x

)n

u = 0

lim
x→±∞

(
∂

∂x

)n

v = 0

 n = 1, 2, . . . .

(23)

These requirements are by no means necessary in order to find the hierarchy of Lax pairs
and the corresponding hierarchy of evolution equations. If we choose other ones we can
obtain the corresponding hierarchy in just the same way as will be done below.

As we shall need it let us briefly outline the properties of the linear operatorPS : C3 →
C3 defined by

PS(ξ) = S × ξ S2 = 1 (24)

S being some fixed vector. It is readily seen that the linear spaceC3 can be split into the
following sum of linear subspaces:

C3 = kerPS ⊕ im PS. (25)

These subspaces are orthogonal with respect to the scalar product

〈ξ, η〉 = ξ1η1 + ξ2η2 + ξ3η3 (26)

and

kerPS = CS im PS = {ξ : 〈ξ, S〉 = 0}. (27)

Let us denote by a superscriptS the projection of a given vectorb onto the subspace imPS ,
that is

bS = b − 〈b, S〉S = −(PS)
2b. (28)

If one has to solve forx the equation

S × x = b

then the problem has a solution if and only if the compatibility condition

〈x, S〉 = 0 ⇔ (b = bS)

is satisfied. In that case all the solutions of the above equation are given by the formula

x = −S × b + µS (29)

whereµ is a scalar parameter.
Let us now pass to the solution of the O(3) CF chain system. Here we have two

equations of the same type as considered above. Let us denote by the superscripts ‘u’ and
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‘v’ the projections on the vector subspaces orthogonal to the vectorsu andv, respectively.
Let us consider the equations

u × bn+1 = −(bn)x − K(v × cn) + u × K(cn) − bn × K(v)

v × cn+1 = −(cn)x − K(u × bn) + K(u) × cn − K(bn) × v.
(30)

It is evident that from this system one can uniquely determine the projections of the
vector fields -bu

n+1 andcv
n+1, and the projections over the subspacesCu andCv respectively

remains indefinite. These projections are given by

u〈bn+1, u〉 v〈cn+1, v〉.
We shall find how these projections can be expressed thoroughbu

n+1, c
v
n+1. Let us consider

the expression

∂

∂x
〈bn+1, u〉 =

〈
∂

∂x
bn+1, u

〉
+

〈
bn+1,

∂

∂x
u

〉
.

Suppose now that the(n + 2)th equation in the chain system can be resolved. Then we can
write

(bn+1)x = −u × bn+2 − K(v × cn+1) + u × K(cn+1) − bn+1 × K(v).

Then evidently

〈u, (bn+1)x〉 = 〈u × K(v), bn+1〉 + 〈v × K(u), cn+1〉
= 〈u × K(v), bu

n+1〉 + 〈v × K(u), cv
n+1〉

and we have

〈u, bn+1〉 =
x∫

±∞

(〈bu
n+1, ux〉 + 〈u × K(v), bu

n+1〉 + 〈v × K(u), cv
n+1〉

)
dx. (31)

In just the same manner

〈v, cn+1〉 =
x∫

±∞

(〈cv
n+1, vx〉 + 〈u × K(v), bu

n+1〉 + 〈v × K(u), cv
n+1〉

)
dx. (32)

Inserting these expressions into the formulae

bn+1 = bu
n+1 + u〈u, bn+1〉 cn+1 = bv

n+1 + v〈v, cn+1〉 (33)

we getbn+1, cn+1 expressed through the projectionsbu
n+1, c

v
n+1. In what follows we shall

assume that the projections over the subspacesCu andCv are given by the above formulae.
Then the last thing that remains to be done is to expressbu

n+1, c
v
n+1 in terms ofbu

n, c
v
n. We

formulate the final answer in the following proposition.

Proposition 1. The CF chain system has the following solution:

b0 = εu c0 = µv

bu
n+1 = u × (bu

n)x + 〈u, bn〉u × ux + [
K(cv

n)
]u − (〈u, bn〉 − 〈v, cn〉)[K(v)]u

+u × K(v × cv
n) + 〈u, K(v)〉bu

n

cv
n+1 = v × (cv

n)x + 〈v, cn〉v × vx + [
K(bu

n)
]v + (〈u, bn〉 − 〈v, cn〉)[K(u)]v

+v × K(u × bu
n) + 〈u, K(v)〉cv

n

n = 0, 1, 2, . . .

(34)
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whereε, µ are arbitrary constants and

〈u, bn〉 =
x∫

±∞

(〈bu
n, ux〉 + 〈u × K(v), bu

n〉 + 〈v × K(u), cv
n〉

)
dx

〈v, cn〉 =
x∫

±∞

(〈cv
n, vx〉 + 〈u × K(v), bu

n〉 + 〈v × K(u), cv
n〉

)
dx.

(35)

One can see that the couple of functions(bu
n+1, c

v
n+1) is expressed through the couple

(bu
n, c

v
n) with the help of some integro-differential operatorA±(u, v), depending on

u(x), v(x). The choice of subscript ‘+’ or ‘ −’ corresponds to the choice of+∞ or
−∞ for the integration limit in the corresponding expressions. In other words(

bu
n+1

cv
n+1

)
= A±(u, v)

(
bu

n

cv
n

)
. (36)

We shall not write the explicit formula forA± as it is too complicated and besides it
can easily be derived from the above proposition. The operators that allow one to obtain
the hierarchies of soliton equations recursively are called recursion operators or generating
operators. It turns out that their existence is very important. For example, they play a
crucial role in describing the hierarchies of Hamiltonian structures for the soliton equations.
Other important application of the generating operators is that their spectral decomposition
allows one to obtain the so-called expansions over the squared (or adjoint) solutions which
proved to be a very useful tool in the investigation of soliton equations (see, for example,
[14], where the case of the generating operator for the hierarchy of Heisenberg ferromagnet
is considered).

It will be superfluous to discuss the hierarchies of Hamiltonian structures for the CF
here and so we shall leave this kind of question for a future publication. We remark only
that as far as we know the generating operator for the CF hierarchy has been calculated in
[11], but from a quite different background, namely using the fact that this operator gives
the relation between compatible Poisson tensors defined via an elliptic bundle. However,
the hierarchies of Lax pairs were not obtained in [11].

At the end of this section let us write the first two systems of the CF hierarchy.

1. N = 0. The first equation in the CF hierarchy:

ut = εux + (ε − µ)(u × K(v))

vt = µvx − (ε − µ)(v × K(u)).
(37)

After the following choice of the parameters:ε = −1, µ = 1, R = 2K and changingu
to −u we obtain the O(3) chiral field equations system (5).
2. N = 1. The second equation in the CF hierarchy:

ut = εu × uxx + 2ε(〈u, K(v)〉 − 〈u0, K(v0)〉)ux − εK(vx) + ε〈u, K(vx)〉u
−µu × K(v × vx) + (ε − µ)(〈u, K(v)〉 − 〈u0, K(v0)〉)(u × K(v))

−(ε − µ)u × K2(u)

vt = µv × vxx + 2µ(〈v, K(u)〉 − 〈v0, K(u0)〉)vx − µK(ux) + µ〈v, K(ux)〉v
−εv × K(u × ux) − (ε − µ)(〈v, K(u)〉 − 〈v0, K(u0)〉)(v × K(u))

+(ε − µ)v × K2(v).

(38)
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An interesting special case of this system is obtained forµ = 0. Then we have

ut = εu × uxx + 2ε(〈u, K(v)〉 − 〈u0, K(v0)〉)ux − εK(vx) + ε〈u, K(vx)〉u
+ε(〈u, K(v)〉 − 〈u0, K(v0)〉)(u × K(v)) − εu × K2(u)

vt = −εv × K(u × ux) − ε(〈v, K(u)〉 − 〈v0, K(u0)〉)(v × K(u)) + εv × K2(v).

(39)

Another reduction of the general system (38) is obtained if we assume thatε = µ. Then
we have
ut = εu × uxx + 2ε(〈u, K(v)〉 − 〈u0, K(v0)〉)ux − εK(vx) + ε〈u, K(vx)〉u

−εu × K(v × vx)

vt = εv × vxx + 2ε(〈v, K(u)〉 − 〈v0, K(u0)〉)vx − εK(ux) + ε〈v, K(ux)〉v
−εv × K(u × ux).

(40)

The next systems of the hierarchy can also be obtained without much difficulties but
for them there is less hope for any physical applications.

3. Polynomial hierarchy of Lax Pairs related to the Landau–Lifshitz equation

The Landau–Lifshitz equation can be obtained within the general scheme described above
if instead of the constraintv2 = 1 we impose the constraintv = 0. Unfortunately, as the
conditionv2 = 1 was essential in all our constructions, one cannot simply insertv = 0 in the
solution for the O(3) CF chain system in order to obtain the solution for the corresponding
chain system for LL equation.

Remark. It is not difficult to check that if instead of the constraintsv = 0, u2 = 1 we
choose the constraintsu = 0, v2 = 1 then we shall obtain the same hierarchy of Lax pairs.
Thus in all the constructions there exists a symmetry between the two so(3) subalgebras in
so(4).

In order to obtain the LL equation in the same terms as it was introduced, we shall
change the notation and in what follows shall putu ≡ S. Then the chain relations are
reduced to

S × b0 = 0

S × bn+1 = −(bn)x + S × K(cn)

(cn)x = −K(S × bn) + K(S) × cn

}
n = 0, 1, . . . , N − 1.

(41)

We shall refer the above system of equations as the LL chain system.
The corresponding hierarchy of evolution equations is then

St = (bN)x − S × K(cN) N = 0, 1, 2, . . . (42)

or using the next term in the hierarchy we can write

St = −S × bN+1 N = 0, 1, 2, . . . . (43)

Thus, as was for the case for the O(3) CF theN th evolution equation obeys the constraint
S2 = 1 if the (N + 1)th relation in the chain can be resolved. Therefore, if we can show
that there exist solution of the infinite system defined above, then all the evolution equations
will respect automatically the constraint. To begin with one must make a choice for the
first terms. We shall consider the case

b0 = S c0 = 0 (44)
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as it leads directly to the LL equation. The general caseb0 = f S , wheref is some scalar
function andc0 is a solution of the equation

(c0)x = K(S) × c0 (45)

seems to be more complicated, but, in fact, we must recall that in order to obtain evolution
equation having the form

St = F (S, Sx, . . .)

the function f and the solutionc0 must depend onx, t only through S(x, t) and its
derivatives. A brief analysis then shows thatc0 = 0 is the only appropriate choice and
the general case can be treated along the same lines.

The hierarchy of equations can be described explicitly if at each step we can present
the solution of the equation

(cn)x = −K(S × bn) + K(S) × cn. (46)

In order to do this we shall need some preparation. Let us introduce the sequence of
diagonal matricesK(n), n = 1, 2, . . ., satisfying the relations

K(1) ≡ K

K(1)(a) × K(1)(b) = K(2)(a × b)

K(1)(a × K(1)K(1)(b)) + K(1)(a) × K(2)(b) = K(3)(a × b)

K(1)(a × K(1)K(2)(b)) + K(2)(a × K(1)K(1)(b)) + K(1)(a) × K(3)(b) = K(4)(a × b)

...

n−2∑
i=1

K(i)(a × K(1)K(n−i−1)(b)) + K(1)(a) × K(n−1)(b) = K(n)(a × b) n = 3, 4, . . .

(47)

for arbitrary choice of the vectorsa, b.

Lemma. The sequence of diagonal matricesK(n)

K(n) = diag(K(n)

1 , K
(n)

2 , K
(n)

3 ) (48)

is well defined and the entriesK(n)
i , i = 1, 2, 3 of K(n) are homogeneous polynomials of

degreen with respect to the variablesj1, j2, j3.

Proof. Let us calculate the first terms of the sequence. One can easily obtain

K
(1)

1 = j1 K
(2)

1 = j2j3 K
(3)

1 = j1(j
2
2 + j2

3 ) K
(4)

1 = j2j3(2j2
1 + j2

2 + j2
3 )

K
(1)

2 = j2 K
(2)

2 = j1j3 K
(3)

2 = j2(j
2
1 + j2

3 ) K
(4)

2 = j1j3(j
2
1 + 2j2

2 + j2
3 )

K
(1)

3 = j3 K
(2)

3 = j1j2 K
(3)

3 = j3(j
2
1 + j2

2 ) K
(4)

3 = j1j2(j
2
1 + j2

2 + 2j2
3 ).

(49)

Since the statement of the lemma is true forn = 1, 2, 3, 4, one can try to prove
the lemma by induction. Suppose that the sequenceK(n) has the needed properties for
n = 1, 2, . . . ; N > 4. Then we shall prove that there exists the unique diagonal matrix
K(N+1) such that

N−1∑
i=1

K(i)(a × K(1)K(s−i)(b)) + K(1)(a) × K(N)(b) = K(N+1)(a × b)
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for arbitrary choice of the vectorsa, b. Let us calculate the first component of the left-hand
side of this vector equality. We get(N−1∑

i=1

K
(i)

1 K
(1)

3 K
(N−i)

3 + K
(1)

2 K
(N)

3

)
a2b3 −

(N−1∑
i=1

K
(i)

1 K
(1)

2 K
(N−i)

2 + K
(1)

3 K
(N)

2

)
a3b2.

In order to write this expression in the form

K
(N+1)

1 (a2b3 − a3b2)

with some coefficientK(N+1)

1 which does not depend onai, bi; i = 1, 2, 3 it is necessary
and sufficient to have

W ≡
N−1∑
i=1

K
(i)

1 (K
(1)

3 K
(N−i)

3 − K
(1)

2 K
(N−i)

2 ) + K
(1)

2 K
(N)

3 − K
(1)

3 K
(N)

2 = 0.

We recall that by the inductive assumption for all 26 s 6 N − 1 we have

K
(s+1)

1 = K
(1)

2 K
(s)

3 + K
(1)

3

s−1∑
i=1

K
(i)

1 K
(s−i)

3

K
(s+1)

1 = K
(1)

3 K
(s)

2 + K
(1)

2

s−1∑
i=1

K
(i)

1 K
(s−i)

2

and also four other relations which can be obtained from the above ones with cyclic
permutation of the indices. They correspond to the other two components of the vector
relations from the lemma. Then we can write

W = K
(1)

2

(
K

(1)

2 K
(N−1)

1 +
N−2∑
l=1

K
(l)

3 K
(N−l−1)

1 K
(1)

1

)

−K
(1)

3

(
K

(1)

3 K
(N−1)

1 +
N−2∑
l=1

K
(l)

2 K
(N−l−1)

1 K
(1)

1

)

+
N−1∑
i=1

(
K

(i)

1 K
(N−i)

3 K
(1)

3 − K
(i)

1 K
(N−i)

2 K
(1)

2

)

= K
(1)

3

(N−3∑
l=1

K
(l)

1 (K
(N−l)

3 − K
(1)

1 K
(N−l−1)

2 )

)
+ K

(1)

3 K
(N−2)

1 (K
(2)

3 − K
(1)

1 K
(1)

2 )

−K
(1)

2

(N−3∑
l=1

K
(l)

1 (K
(N−l)

2 − K
(1)

1 K
(N−l−1)

3 )

)
−K

(1)

2 K
(N−2)

1 (K
(2)

2 − K
(1)

1 K
(1)

3 ).

From the explicit formulae forK(2) it follows that the terms which are not under the
summation are zero. As for the rest of the expressionW , it vanishes due to the the relations

K
(N−l)

3 − K
(1)

1 K
(N−l−1)

2 =
N−l−2∑
j=1

K
(1)

2 K
(j)

3 K
(N−l−j−1)

2

K
(N−l)

2 − K
(1)

1 K
(N−l−1)

3 =
N−l−2∑
j=1

K
(1)

3 K
(j)

3 K
(N−l−j−1)

2 .
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Exactly the same procedure can be applied for the other two components. The statement
that the entries ofK(n) are homogeneous polynomials of degreen readily follows from the
proof. �
Proposition 2. Supposebm, cm; m = 0, 1, . . . , n − 1 > 0 are solutions of the chain system

b0 = S c0 = 0

S × bm+1 = −(bm)x + S × K(cm)

(cm)x = −K(S × bm) + K(S) × cm

}
m = 1, 2, . . . , n − 1.

(50)

Then

cn =
n∑

q=1

(−1)q−1K(q)(bn−q) (51)

is a solution of the equation

(cn)x = −K(S × bn) + K(S) × cn.

Proof. We shall prove this proposition by induction. Forn = 1 we have

−S × b1 = (b0)x = (S)x.

As S2 = 1, the vectorSx is orthogonal toS and one getsb1 = S × Sx + αS, whereα is
a scalar parameter.Then it is readily seen thatc1 = K(S) solves the equation

(c1)x = −K(S × b1) + K(S) × c1.

We shall now assume that the proposition is true for alln = 1, 2, . . . , N −1 and shall prove
it for n = N . In order to do this let us calculate

(cN)x =
N∑

q=1

(−1)q−1K(q)((bN−q)x).

Taking into account thatbi are solutions of the chain system we get

(cN)x = −
N∑

q=1

(−1)q−1K(q)(S × bN−q+1) +
N−1∑
q=1

(−1)q−1K(q)(S × K(1)(cN−q))

where we have used thatc0 = 0. Inserting into this equation the expressions forcN−q we
obtain

(cN)x = −
N∑

q=1

(−1)q−1K(q)(S × bN−q+1)

+
N−1∑
q=1

(−1)q−1K(q)(S × K(1)(

N−q∑
r=1

(−1)r−1K(r)(bN−q−r ))).

Then

(cN)x + K(S × bN) − K(S) × cN

=
N−1∑
q=1

(−1)q−1K(q)

(
S × K(1)

(N−q∑
r=1

(−1)r−1K(r)(bN−q−r )

))

−
N∑

q=1

(−1)q−1K(q)(S × bN−q) + K(1)(S × bN)
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−K(1)(S) ×
N∑

q=1

(−1)q−1K(q)(bN−q)

=
N−1∑
q=1

(−1)q−1K(q)

(
S × K(1)

(N−q∑
r=1

(−1)r−1K(r)(bN−q−r )

))

−
N∑

q=2

(−1)q−1K(q)(S × bN−q+1) − K(1)(S) ×
N∑

q=1

(−1)q−1K(q)(bN−q)

=
N−1∑
q=2

(−1)q+1
(
K(q+1)(S × bN−q+1) − K(1)(S) × K(q)(bN−q)

)

−
N−1∑
q=2

(−1)q+1

( ∑
l+r=q

K(l)(S × K(1)K(r)(bN−q)

)

+(−1)N
(

K(1)(S) × K(q)(b0) +
∑

q+r=N

K(q)(S × K(1)K(r)(b0)

)

+K(2)(S × bN−1) − K(1)(S) × K(1)(bN−1).

From the definition of the matricesK(q) it follows that the above expression is equal to

(−1)NK(N+1)(S × b0) = 0.

ThuscN is a solution of the equation

(cN)x = −K(S × bN) + K(S) × cN

and the proposition is proved. �

Now we know how to solve the second part of the equations in the chain system. The
first part of these equations runs as follows:

S × bn+1 = −(bn)x + S × K(cn).

We have considered similar equations dealing with the CF chain system. As outlined
in the previous section in order to solve forbn+1 the compatibility condition

〈(bn)x, S〉 = 0 (52)

must be satisfied and to ensure it we must use the freedom in the determination of the solution
for the previous equation. Let us consider the following decomposition ofbn, n > 1:

bn = bS
n + S〈bn, S〉. (53)

As before when one solves the chain relations one recovers uniquelybS
n and all the non-

uniqueness appears in the determination of〈bn, S〉. They are recovered frombS
n if in

addition one can fix the values of the fieldS and itsx-derivatives at some point. Then
the calculations are exactly the same as in the case of CF chain system and we shall omit
them. Before presenting the final result, however, there is one point we want to discuss.
As already mentioned, in order to obtain the unique solution on each step one must fix the
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values of the vector fieldS and itsx derivatives at some point ofR3 (including infinity).
We shall assume that the functionS has the following property:

lim
x→±∞ S = S0 = constant

lim
x→±∞

(
∂

∂x

)n

S = 0

n = 1, 2, . . . .

(54)

Usually, for the LL equation the condition

lim
x→±∞ S = (0, 0, 1)

is imposed. We consider the above condition in order to obtain more symmetrical
expressions with respect to a cyclic permutation of the indices 1, 2, 3.

Remark. The above requirements seem quite natural for the Landau–Lifshitz equation, but,
of course , if one is looking only for the hierarchy of equations they are not absolutely
necessary.

Thus we arrive at the following solution of the LL chain system:

bS
n+1 = S × ∂

∂x
(bS

n) + (S × Sx)

x∫
±∞

〈bS
n, Sx〉 dx + (K(cn))

S. (55)

The problem is solved, but in order to put it in a more convenient form let us introduce the
operator

3±(X(x)) ≡ S × ∂

∂x
X(x) + (S × Sx)

x∫
±∞

〈X(x), Sx〉 dx (56)

X(x) being a vector field. Then we can formulate our results in the following proposition.

Proposition 3. The LL chain system has the following solution:

b0 = S c0 = 0

b1 = S × Sx c1 = K(S)

bn+1 = bS
n+1 + S

x∫
±∞

〈bS
n+1, Sx〉 dx

bS
n+1 = 3±(bS

n) + (K(cn))
S

cn =
n∑

q=1

(−1)q−1K(q)(bn−q)


n = 1, 2, . . . .

(57)

The operator3± is the so-called recursion or generating operator for the Heisenberg
ferromagnet equation hierarchy of soliton equations. It was calculated for the first time
in [13] (see also [14]), using the gauge equivalence between the Heisenberg ferromagnet
equation and the nonlinear Schrödinger equation [16]. There are at least two other possible
ways of arriving at this operator: geometrical (see, for example, [15]), or by solving the
corresponding chain system for the Heisenberg ferromagnet equation hierarchy (see [10]).
The Heisenberg ferromagnet (HF) equation is the following system:

St = S × Sxx. (58)
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HereS(x, t) = (S1(x, t), S2(x, t), S3(x, t)) is vector field depending on the spatial variable
x and the timet , taking its values on the unit sphereS2 ⊂ R3. The boundary conditions
for this equation are similar to those for the LL equation:

lim
x→±∞ S = (0, 0, 1). (59)

Formally the HF equation is obtained from the LL equation ifri = 0. Therefore it is
natural to expect that when certain parameters (in our caseji) tend to zero one can obtain
the recursion scheme of HF from the recursion scheme in the LL case. As it is seen from
the above proposition this is indeed the case in our approach. Surprisingly, for the elliptic
bundle when the parametersri tend to zero one obtains not3, but32, see [9]. However, as
we shall see below the hierarchies of equations obtained via elliptic and polynomial bundles
seem to be equivalent in a sense to be described below.

Finally, let us write the first evolution equations from the hierarchy corresponding to
the chain system solution that was given in proposition 3. These equations as mentioned
are written in the form

St = −S × bN+1 N = 0, 1, 2, . . . . (60)

We have the following equations.

1. N = 0. The first equation in the hierarchy, as often happens, is linear:

St = Sx. (61)

2. N = 1. The second equation of the hierarchy is

St = (b1)x − S × c1 = S × Sxx − S × K2(S). (62)

If we choosej2
i = −ri; i = 1, 2, 3 we obtain the Landau–Lifshitz equation.

3. N = 2. The third equation of the hierarchy comprises

bS
2 = S × (S × Sxx) − S × (S × K2S) = (−Sxx + K2(S))S.

b2 = (−Sxx + K2(S))S + S

x∫
−∞

〈−Sxx + K2(S), Sx〉 dx

= (−Sxx + K2(S))S + 1
2S(〈K2(S), S〉 − 〈K2(S0), S0〉) − 1

2S〈Sx, Sx〉

= − Sxx + K2(S) + S
(〈Sxx, S〉 − 1

2(〈K2(S), S〉 − 〈K2(S), S〉)
)

= − Sxx + K2(S) − S
(

3
2〈Sx, Sx〉 + 1

2(K2(S), S〉 − K2(S), S〉)
)
.

The corresponding evolution equation is

St = (b2)x − S × K(c2) = (b2)x − S × K(K(b1) + K(2)(S)).

But, KK(2) = j1j2j3113 and therefore for the equation we have

St = (b2)x − S × K2(S × Sx).

We get

St = −Sxxx − S × K2(S × Sx) + K2(Sx) − Sx

(
3
2〈Sx, Sx〉 + 1

2(〈K2(S), S〉

− 〈K2(S0), S0〉)
) − S

(
3〈Sx, Sxx〉 + 〈K2(S), Sx〉

)
(63)
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which after a brief calculation can be put in the final form

St = −Sxxx − 3S〈Sx, Sxx〉 − 3
2Sx

(〈Sx, Sx〉 + 〈K2(S), S〉 − 2
3 tr K2

− 1
3〈K2(S), S〉

)
. (64)

If we acceptS0 = (0, 0, 1) we get

St = −Sxxx − 3S〈Sx, Sxx〉 − 3
2Sx

(〈Sx, Sx〉 + 〈K2(S), S〉 − 1
3(2j2

1 + 2j2
2 + 3j2

3 )
)
. (65)

The above equation differs from the next equation in the LL hierarchy found via the elliptic
pairs (see, for example, [9]). Using our notation this equation can be written as follows:

St = Sxxx + 3S〈Sx, Sxx〉 + 3
2Sx

(〈Sx, Sx〉 + 〈K2(S), S〉 − j2
3

)
. (66)

This equation was obtained by Dateet al [17].

4. Discussion

As far as we know, the set of polynomial Lax pairs for the CF hierarchy has not been
presented until now. Almost the same is true for the corresponding hierarchy of equations,
because it is very difficult to obtain the corresponding hierarchy of soliton equations from
the results of [11]. Therefore there is limited scope for comparing our result with those
of others. For the LL case, however, the corresponding hierarchy of soliton equations
obtained via elliptic bundle exists [9]. Let us briefly describe the situation of the LL
hierarchies obtained via elliptic and via polynomial bundle. The first nonlinear evolution
equations in both hierarchies coincide. It is simply the LL equation. The second nonlinear
equations, however, are different. Nevertheless, one can say that up to the third equation
both hierarchies are equivalent. Indeed, the equations in the hierarchies have the form

St = Xn(S, Sx, . . .)

St = Yn(S, Sx, . . .)

}
n = 1, 2, . . . (67)

their right-hand sides being vector fields on the infinite dimensional manifold of ‘potentials’,
i.e. the set of functionsS(x). The hierarchies would be equivalent not only ifXn =
Yn, n = 1, 2, . . ., but also in the case when everyXn is finite linear combination with
constant coefficients of the fieldsYn. For example, if we denote byYn the fields obtained
via polynomial bundle then the field corresponding to the equation of Dateet al can be
written as

−Y3 + (j2
1 + j2

2 )Y1. (68)

We believe that both hierarchies are equivalent in the sense mentioned above but, of course,
the question of the equivalence of both hierarchies remains open.

We also leave to the future the questions about the Hamiltonian structures of the
equations in LL and CF hierarchies and about the commutativity of the corresponding
flows. These results will be published elsewhere.
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